Print Topic





The tetracyclines are broad-spectrum antibiotics with similar antimicrobial features, but they differ somewhat from one another in terms of their spectra and pharmacokinetic disposition.


There are 3 naturally occurring tetracyclines (oxytetracycline, chlortetracycline, and demethylchlortetracycline) and several that are derived semisynthetically (tetracycline, rolitetracycline, methacycline, minocycline, doxycycline, lymecycline, etc). Elimination times permit a further classification into short-acting (tetracycline, oxytetracycline, chlortetracycline), intermediate-acting (demethylchlortetracycline and methacycline), and long-acting (doxycycline and minocycline).

General Properties

All of the tetracycline derivatives are crystalline, yellowish, amphoteric substances that, in aqueous solution, form salts with both acids and bases. They characteristically fluoresce when exposed to ultraviolet light. The most common salt form is the hydrochloride, except for doxycycline, which is available as doxycycline hyclate. The tetracyclines are stable as dry powders but not in aqueous solution, particularly at higher pH ranges (7–8.5). Preparations for parenteral administration must be carefully formulated, often in propylene glycol or polyvinyl pyrrolidone with additional dispersing agents, to provide stable solutions. Tetracyclines form poorly soluble chelates with bivalent and trivalent cations, particularly calcium, magnesium, aluminum, and iron. Doxycycline and minocycline exhibit the greatest liposolubility and better penetration of bacteria such as Staphylococcus aureus than does the group as a whole. This may contribute to their efficacy in treatment of gingival diseases that may be associated with bacterial glycocalyx.

Antimicrobial Activity

The exact site involved in the antimicrobial activity of tetracyclines has not been clarified, but these antibiotics bind reversibly to bacterial 30S ribosomes and inhibit protein synthesis, perhaps by several mechanisms. Mainly, the binding of aminoacyl-tRNA to the acceptor site on the mRNA-ribosome complex seems to be impaired. This effect also is evident in mammalian cells, although microbial cells are selectively more susceptible because of the greater concentrations that are seen. Tetracyclines enter microorganisms in part by diffusion and in part by an energy-dependent, carrier-mediated system that is responsible for the high concentrations achieved in susceptible bacteria. The tetracyclines are generally bacteriostatic, and a responsive host-defense system is essential for their successful use. At high concentrations, as may be attained in urine, they become bactericidal because the organisms seem to lose the functional integrity of the cytoplasmic membrane. Tetracyclines are more effective against multiplying microorganisms and tend to be more active at a pH of 6–6.5.

Microbial resistance to tetracyclines is based almost exclusively on decreased penetration of the drug into previously susceptible organisms. Two forms are recognized: 1) impaired uptake into bacteria, seen in mutant strains that do not have the necessary transport system, and 2) plasmid-mediated resistance, which confers the property of either diminished uptake or active efflux of tetracycline from the bacterial cell. The genomes for these capabilities may be transferred either by transduction (as in Staphylococcus aureus) or by conjugation (as in many enterobacteria). Resistance develops slowly in a multistep fashion but is widespread because of the extensive use of low concentrations of tetracyclines.

All tetracyclines are about equally active and typically have about the same broad spectrum, which comprises both aerobic and anaerobic gram-positive and gram-negative bacteria, mycoplasmas, rickettsiae, chlamydiae, and even some protozoa (amebae). Strains of Pseudomonas aeruginosa, Proteus, Serratia, Klebsiella, and Arcanobacterium spp frequently are resistant, as are many pathogenic E coli isolates. Even though there is general cross-resistance among tetracyclines, doxycycline and minocycline usually are more effective against staphylococci.

Pharmacokinetic Features

After usual oral dosage, tetracyclines are absorbed primarily in the upper small intestine, and effective blood concentrations are reached in 2–4 hr. GI absorption can be impaired by sodium bicarbonate, aluminum hydroxide, magnesium hydroxide, iron, calcium salts, and (except for the lipid-soluble tetracyclines doxycycline and minocycline) milk and milk products. Tetracyclines at therapeutic concentrations should not be administered PO to ruminants: they are poorly absorbed and can substantially depress ruminal microfloral activity. Specially buffered tetracycline solutions can be administered IM and IV. Through chemical manipulation (especially choice of carrier and high magnesium content), the absorption of oxytetracycline from IM sites may be delayed, which produces a long-acting effect. Tetracyclines can cause tissue necrosis at injection sites, in which residues may remain for several weeks. Tetracyclines can also be absorbed from the uterus and udder, although plasma concentrations remain low.

Tetracyclines distribute rapidly and extensively in the body, particularly after parenteral administration. They enter almost all tissues and body fluids; high concentrations are found in the kidneys, liver, bile, lungs, spleen, and bone. Lower concentrations are found in serosal fluids, synovia, CSF, ascitic fluid, prostatic fluid, and vitreous humor. The more lipid-soluble tetracyclines (doxycycline and minocycline) readily penetrate tissues such as the blood-brain barrier, and CSF concentrations reach ∼30% of the plasma concentrations. They also are present in saliva and tears. Because tetracyclines tend to chelate calcium ions (less so for doxycycline), they are deposited irreversibly in the growing bones and in dentin and enamel of unerupted teeth of young animals, or even the fetus if transplacental passage occurs (see Special Clinical Concerns). Drug bound in this fashion is pharmacologically inactive. Because of this property, they may serve as markers in developing bone or in proliferating bone tissue. Tetracyclines are bound to plasma proteins to varying degrees (eg, oxytetracycline, 30%; tetracycline, 60%; doxycycline, 90%).

Biotransformation of the tetracyclines seems to be limited in most domestic animals, and generally about one-third of a given dose is excreted unchanged. Rolitetracycline is metabolized to tetracycline. Doxycycline and minocycline may be more extensively biotransformed than other tetracyclines (up to 40% of a given dose).

Tetracyclines are excreted via the kidneys (glomerular filtration) and the GI tract (biliary elimination and directly). Generally 50–80% of a given dose is recoverable from the urine, although several factors may influence renal elimination, including age, route of administration, urine pH, glomerular filtration rate, renal disease, and the particular tetracycline used. Intestinal (biliary) elimination is always significant, it is commonly ∼10–20%, even with parenteral administration; for doxycycline and its metabolites, and minoclycline, this is the major route of excretion. Tetracyclines are also eliminated in milk; concentrations peak 6 hr after a parenteral dose, and traces are still present up to 48 hr later. Concentrations in milk usually attain ∼50–60% of the plasma concentration and are often higher in mastitic milk.

The plasma half-lives of tetracyclines are 6–12 hr and can be longer depending on age (slower elimination in animals <1 mo old), disease, and the tetracycline itself (see Elimination, Distribution, and Clearance of TetracyclinesTables). In large animals, daily injections of standard dosages usually are sufficient to maintain effective inhibitory concentrations. Long-acting formulations of oxytetracycline, when injected IM, generally produce plasma concentrations >0.5 μg/mL for ∼72 hr. Tetracyclines usually are administered PO bid-tid (sid-bid for doxycycline and minocycline).

Table 17

PrintOpen table in new window Open table in new window

Therapeutic Indications and Dose Rates

The tetracyclines are used to treat both systemic and local infections. General organ infections include bronchopneumonia, bacterial enteritis, urinary tract infections, cholangitis, metritis, mastitis, prostatitis, and pyodermatitis. Specific conditions include infectious keratoconjunctivitis in cattle, chlamydiosis, heartwater, anaplasmosis, actinomycosis, actinobacillosis, nocardiosis (especially minocycline), ehrlichiosis (especially doxycycline), eperythrozoonosis, and haemobartonellosis. Minocycline and doxycycline are often effective to a somewhat lesser degree against resistant strains of Staphylococcus aureus.

In addition to antimicrobial chemotherapy, the tetracyclines are used for other purposes. As additives in animal feeds, they serve as growth promoters. Because of the affinity of tetracyclines for bones, teeth, and necrotic tissue, they can be used to delineate tumors by fluorescence. Demethylchlortetracycline has been used to inhibit the action of antidiuretic hormone in cases of excessive water retention and to “stretch” flexor digital tendons in neonatal foals.

A selection of general dosages for some tetracyclines is listed in see Dosages of TetracyclinesTables. The dose rate and frequency should be adjusted as needed for the individual animal.

Table 18

PrintOpen table in new window Open table in new window

Special Clinical Concerns

Because several diverse effects may result from the administration of the tetracyclines, caution should be exercised. Superinfection by nonsusceptible pathogens such as fungi, yeasts, and resistant bacteria is always a possibility when broad-spectrum antibiotics are used. This may lead to GI disturbances after either PO or parenteral administration or to “persistent infection” when they are applied topically (eg, in the ear). Severe and even fatal diarrhea can occur in horses receiving tetracyclines, especially if the animals are severely stressed or critically ill.

High doses administered PO to ruminants seriously disrupt microfloral activity in the ruminoreticulum, eventually producing stasis. Elimination of the gut flora in monogastric animals reduces the synthesis and availability of the B vitamins and vitamin K from the large intestine. With prolonged therapy, vitamin supplementation is a useful precaution.

Tetracyclines chelate calcium in teeth and bones; they become incorporated into these structures, inhibit calcification (eg, hypoplastic dental enamel), and cause yellowish then brownish discoloration. At extremely high concentrations, the healing processes in fractured bones is impaired.

Rapid IV injection of a tetracycline can result in hypotension and sudden collapse. This appears to be related to the ability of the tetracyclines to chelate ionized calcium, although a depressant effect by the propylene glycol carrier itself may also be involved. This effect can be avoided by slow infusion of the drug (>5 min) or by pretreatment with IV calcium gluconate.

The IV administration of undiluted propylene-glycol-based preparations leads to intravascular hemolysis, which results in hemoglobinuria, and possibly other reactions such as hypotension, ataxia, and CNS depression.

Because tetracyclines interfere with protein synthesis even in host cells and therefore tend to be catabolic, an increase in BUN can be expected. The combined use of glucocorticoids and tetracyclines often leads to a significant weight loss, particularly in anorectic animals.

Hepatotoxic effects due to large doses of tetracyclines have been reported in pregnant women and in other animals. The mortality rate is high.

The tetracyclines are also potentially nephrotoxic and are contraindicated (except for doxycycline) in renal insufficiency. Fatal renal failure has been reported in septicemic and endotoxemic cattle given high doses of oxytetracycline. The administration of expired tetracycline products may lead to acute tubular nephrosis.

Swelling, necrosis, and yellow discoloration at the injection site almost inevitably are seen. Phototoxic dermatitis may be seen in human patients treated with demethyl-chlortetracycline and other analogs, but this reaction is rare in other animals. Hypersensitivity reactions do occur; for example, cats may show a “drug fever” reaction, often accompanied by vomiting, diarrhea, depression, inappetence, and eosinophilia.

The tetracyclines can inhibit WBC chemotaxis and phagocytosis when present in high concentrations at sites of infection. This clearly hinders normal host defense mechanisms. The addition of glucocorticoids to the therapeutic regimen would impair immunocompetence even further.

Doxycyline administered in tablets has been associated with esophageal erosion in cats. The incidence is reduced if administration is followed by a 5-mL volume of fluid.

The absorption of tetracyclines from the GI tract is decreased by milk and milk products (less so for doxycycline and minocycline), antacids, kaolin, and iron preparations. Tetracyclines gradually lose activity when diluted in infusion fluids and exposed to ultraviolet light. Vitamins of the B-complex group, especially riboflavin, hasten this loss of activity in infusion fluids. Tetracyclines also bind to the calcium ions in Ringer's solution.

Methoxyflurane anesthesia combined with tetracycline therapy may be nephrotoxic. Microsomal enzyme inducers such as phenobarbital and phenytoin shorten the plasma half-lives of minocycline and doxycycline. Except for minocycline and doxycycline, the presence of food can substantially delay the absorption of tetracyclines from the GI tract. The tetracyclines are less active in alkaline urine, and urine acidification can increase their antimicrobial efficacy.

Doxycycline may be associated with GI upset; this might be reduced by administering the drug with food.

Tetracyclines may increase amylase, BUN, sulfobromophthalein (BSP®), eosinophil count, AST, and ALT. Tetracyclines used in combination with diuretics are often associated with a marked rise in the BUN. Cholesterol, glucose, potassium, and prothrombin time may be decreased. A false-positive urine glucose test is also possible.

Regulatory requirements for withdrawal times for food animals and milk discard times vary among countries. These must be followed carefully to prevent food residues and consequent public health implications. The withdrawal times listed in see Drug Withdrawal and Milk Discard Times of TetracyclinesTablesserve only as general guidelines.

Table 19

PrintOpen table in new window Open table in new window

Last full review/revision March 2012 by Dawn Merton Boothe, DVM, PhD, DACVIM, DACVCP

Copyright     © 2009-2015 Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, N.J., U.S.A.    Privacy    Terms of Use    Permissions